
Coping with
NP-completeness:

Special Cases

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Advanced Algorithms and Complexity
Data Structures and Algorithms

https://www.coursera.org/learn/advanced-algorithms-and-complexity
https://goo.gl/KAfKJT


The fact that a problem is NP-complete
does not exclude an efficient algorithm for
special cases of the problem.
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Striking connection between strongly
connected components of a graph and
formulas in 2-CNF
A linear time algorithm for 2-SAT



2-Satisfiability (2-SAT)

Input: A set of clauses, each containing at
most two literals (that is, a 2-CNF
formula).

Output: Find a satisfying assignment
(if exists).



Example

(x ∨ y)(z)(z ∨ x) is satisfied by
x = 0, y = 1, z = 0

(x ∨ y)(z)(z ∨ x)(y) is unsatisfiable
(x ∨ y)(x ∨ y)(x ∨ y)(x ∨ y) is
unsatisfiable
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Consider a clause (ℓ1 ∨ ℓ2)

Essentially, it says that ℓ1 and ℓ2 cannot
be both equal to 0
In other words, if ℓ1 = 0, then ℓ2 = 1
and if ℓ2 = 0, then ℓ1 = 1
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Consider a clause (ℓ1 ∨ ℓ2)

Essentially, it says that ℓ1 and ℓ2 cannot
be both equal to 0
In other words, if ℓ1 = 0, then ℓ2 = 1
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Definition
Implication is a binary logical operation
denoted by ⇒ and defined by the following
truth table:

x y x ⇒ y

0 0 1
0 1 1
1 0 0
1 1 1



Definition
For a 2-CNF formula, its implication graph is
constructed as follows:

for each variable x , introduce two
vertices labeled by x and x ;
for each 2-clause (ℓ1 ∨ ℓ2), introduce
two directed edges ℓ1 → ℓ2 and ℓ2 → ℓ1

for each 1-clause (ℓ), introduce an edge
ℓ→ ℓ

Encodes all implications imposed by the
formula.
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Thus, our goal is to assign truth values to
the variables so that each edge in the
implication graph is “satisfied”, that is, there
is no edge from 1 to 0.



Skew-Symmetry

The graph is skew-symmetric: if there is
an edge ℓ1 → ℓ2, then there is an edge
ℓ2 → ℓ1

This generalizes to paths: if there is a
path from ℓ1 to ℓ2, then there is a path
from ℓ2 to ℓ1
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Transitivity
Lemma
If all the edges are satisfied by an assignment
and there is a path from ℓ1 to ℓ2, then it
cannot be the case that ℓ1 = 1 and ℓ2 = 0.

Proof
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Transitivity
Lemma
If all the edges are satisfied by an assignment
and there is a path from ℓ1 to ℓ2, then it
cannot be the case that ℓ1 = 1 and ℓ2 = 0.

Proof
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Strongly Connected Components

All variables lying in the same SCC of
the implication graph should be assigned
the same value

In particular, if a SCC contains a
variable together with its negation, then
the formula is unsatisfiable
It turns out that otherwise the formula
is satisfiable!
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2SAT(2-CNF F)
construct the implication graph G
find SCC’s of G
for all variables x:

if x and x lie in the same SCC of G:
return “unsatisfiable”

find a topological ordering of SCC’s
for all SCC’s C in reverse order:

if literals of C are not assigned yet:
set all of them to 1
set their negations to 0

return the satisfying assignment

Running time: O(|F |)
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Lemma
The algorithm 2SAT is correct.

Proof
When a literal is set to 1, all the literals
that are reachable from it have already
been set to 1 (since we process SCC’s in
reverse topological order).

When a literal is set to 0, all the literals
it is reachable from have already been
set to 0 (by skew-symmetry).
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Planning a company party

You are organizing a company party. You
would like to invite as many people as
possible with a single constraint: no person
should attend a party with his or her direct
boss.



Maximum independent set in a tree

Input: A tree.
Output: An independent set (i.e., a subset

of vertices no two of which are
adjacent) of maximum size.
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Safe move
For any leaf, there exists an optimal solution
including this leaf.

It is safe to take all the leaves.
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PartyGreedy(T )

while T is not empty:
take all the leaves to the solution
remove them and their parents from T

return the constructed solution

Running time: O(|T |) (for each vertex, maintain
the number of its children).
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Planning a company party

You are organizing a company party again.
However this time, instead of maximizing the
number of attendees, you would like to
maximize the total fun factor.



Maximum weighted independent set
in trees

Input: A tree T with weights on vertices.
Output: An independent set (i.e., a subset

of vertices no two of which are
adjacent) of maximum total weight.
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Subproblems

D(v) is the maximum weight of an
independent set in a subtree rooted at v

Recurrence relation: D(v) is

max

⎧⎪⎪⎨⎪⎪⎩w(v) +
∑︁

grandchildren
w of v

D(w),
∑︁

children
w of v

D(w)

⎫⎪⎪⎬⎪⎪⎭ .
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Function FunParty(v)
if D(v) =∞:

if v has no children:
D(v)← w(v)

else:
m1 ← w(v)
for all children u of v:

for all children w of u:
m1 ← m1 + FunParty(w)

m0 ← 0
for all children u of v:

m0 ← m0 + FunParty(u)
D(v)← max(m1,m0)

return D(v)
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