
Coping with
NP-completeness:

Special Cases

Alexander S. Kulikov
Steklov Institute of Mathematics at St. Petersburg

Russian Academy of Sciences

Advanced Algorithms and Complexity
Data Structures and Algorithms

https://www.coursera.org/learn/advanced-algorithms-and-complexity
https://goo.gl/KAfKJT

The fact that a problem is NP-complete
does not exclude an efficient algorithm for
special cases of the problem.

Outline

1 2-Satisfiability

2 Independent Sets in Trees

This part

Striking connection between strongly
connected components of a graph and
formulas in 2-CNF
A linear time algorithm for 2-SAT

2-Satisfiability (2-SAT)

Input: A set of clauses, each containing at
most two literals (that is, a 2-CNF
formula).

Output: Find a satisfying assignment
(if exists).

Example

(x ∨ y)(z)(z ∨ x) is satisfied by
x = 0, y = 1, z = 0

(x ∨ y)(z)(z ∨ x)(y) is unsatisfiable
(x ∨ y)(x ∨ y)(x ∨ y)(x ∨ y) is
unsatisfiable

Example

(x ∨ y)(z)(z ∨ x) is satisfied by
x = 0, y = 1, z = 0
(x ∨ y)(z)(z ∨ x)(y) is unsatisfiable

(x ∨ y)(x ∨ y)(x ∨ y)(x ∨ y) is
unsatisfiable

Example

(x ∨ y)(z)(z ∨ x) is satisfied by
x = 0, y = 1, z = 0
(x ∨ y)(z)(z ∨ x)(y) is unsatisfiable
(x ∨ y)(x ∨ y)(x ∨ y)(x ∨ y) is
unsatisfiable

Consider a clause (ℓ1 ∨ ℓ2)

Essentially, it says that ℓ1 and ℓ2 cannot
be both equal to 0
In other words, if ℓ1 = 0, then ℓ2 = 1
and if ℓ2 = 0, then ℓ1 = 1

Consider a clause (ℓ1 ∨ ℓ2)

Essentially, it says that ℓ1 and ℓ2 cannot
be both equal to 0

In other words, if ℓ1 = 0, then ℓ2 = 1
and if ℓ2 = 0, then ℓ1 = 1

Consider a clause (ℓ1 ∨ ℓ2)

Essentially, it says that ℓ1 and ℓ2 cannot
be both equal to 0
In other words, if ℓ1 = 0, then ℓ2 = 1
and if ℓ2 = 0, then ℓ1 = 1

Definition
Implication is a binary logical operation
denoted by ⇒ and defined by the following
truth table:

x y x ⇒ y

0 0 1
0 1 1
1 0 0
1 1 1

Definition
For a 2-CNF formula, its implication graph is
constructed as follows:

for each variable x , introduce two
vertices labeled by x and x ;
for each 2-clause (ℓ1 ∨ ℓ2), introduce
two directed edges ℓ1 → ℓ2 and ℓ2 → ℓ1

for each 1-clause (ℓ), introduce an edge
ℓ→ ℓ

Encodes all implications imposed by the
formula.

Definition
For a 2-CNF formula, its implication graph is
constructed as follows:

for each variable x , introduce two
vertices labeled by x and x ;
for each 2-clause (ℓ1 ∨ ℓ2), introduce
two directed edges ℓ1 → ℓ2 and ℓ2 → ℓ1

for each 1-clause (ℓ), introduce an edge
ℓ→ ℓ

Encodes all implications imposed by the
formula.

(x ∨ y)(y ∨ z)(x ∨ z)(z ∨ y)

(x ∨ y)(y ∨ z)(x ∨ z)(z ∨ y)

z

z

x

x

y

y

(x ∨ y)(y ∨ z)(x ∨ z)(z ∨ y)

z

z

x

x

y

y

(x ∨ y)(y ∨ z)(x ∨ z)(z ∨ y)

z

z

x

x

y

y

(x ∨ y)(y ∨ z)(x ∨ z)(z ∨ y)

z

z

x

x

y

y

(x ∨ y)(y ∨ z)(x ∨ z)(z ∨ y)

z

z

x

x

y

y

(x ∨ y)(y ∨ z)(x ∨ z)(z ∨ y)

z

z

x

x

y

y

x = 1, y = 1, z = 1

(x ∨ y)(y ∨ z)(x ∨ z)(z ∨ y)

z

z

x

x

y

y

x = 0, y = 0, z = 0

Thus, our goal is to assign truth values to
the variables so that each edge in the
implication graph is “satisfied”, that is, there
is no edge from 1 to 0.

Skew-Symmetry

The graph is skew-symmetric: if there is
an edge ℓ1 → ℓ2, then there is an edge
ℓ2 → ℓ1

This generalizes to paths: if there is a
path from ℓ1 to ℓ2, then there is a path
from ℓ2 to ℓ1

Skew-Symmetry

The graph is skew-symmetric: if there is
an edge ℓ1 → ℓ2, then there is an edge
ℓ2 → ℓ1

This generalizes to paths: if there is a
path from ℓ1 to ℓ2, then there is a path
from ℓ2 to ℓ1

Transitivity
Lemma
If all the edges are satisfied by an assignment
and there is a path from ℓ1 to ℓ2, then it
cannot be the case that ℓ1 = 1 and ℓ2 = 0.

Proof

Transitivity
Lemma
If all the edges are satisfied by an assignment
and there is a path from ℓ1 to ℓ2, then it
cannot be the case that ℓ1 = 1 and ℓ2 = 0.

Proof

ℓ1

1
ℓ2

0

Transitivity
Lemma
If all the edges are satisfied by an assignment
and there is a path from ℓ1 to ℓ2, then it
cannot be the case that ℓ1 = 1 and ℓ2 = 0.

Proof

ℓ1

1
ℓ2

0

Transitivity
Lemma
If all the edges are satisfied by an assignment
and there is a path from ℓ1 to ℓ2, then it
cannot be the case that ℓ1 = 1 and ℓ2 = 0.

Proof

ℓ1

1
ℓ2

01 0

Transitivity
Lemma
If all the edges are satisfied by an assignment
and there is a path from ℓ1 to ℓ2, then it
cannot be the case that ℓ1 = 1 and ℓ2 = 0.

Proof

ℓ1

1
ℓ2

01 0

Strongly Connected Components

All variables lying in the same SCC of
the implication graph should be assigned
the same value

In particular, if a SCC contains a
variable together with its negation, then
the formula is unsatisfiable
It turns out that otherwise the formula
is satisfiable!

Strongly Connected Components

All variables lying in the same SCC of
the implication graph should be assigned
the same value
In particular, if a SCC contains a
variable together with its negation, then
the formula is unsatisfiable

It turns out that otherwise the formula
is satisfiable!

Strongly Connected Components

All variables lying in the same SCC of
the implication graph should be assigned
the same value
In particular, if a SCC contains a
variable together with its negation, then
the formula is unsatisfiable
It turns out that otherwise the formula
is satisfiable!

2SAT(2-CNF F)
construct the implication graph G
find SCC’s of G
for all variables x:

if x and x lie in the same SCC of G:
return “unsatisfiable”

find a topological ordering of SCC’s
for all SCC’s C in reverse order:

if literals of C are not assigned yet:
set all of them to 1
set their negations to 0

return the satisfying assignment

Running time: O(|F |)

2SAT(2-CNF F)
construct the implication graph G
find SCC’s of G
for all variables x:

if x and x lie in the same SCC of G:
return “unsatisfiable”

find a topological ordering of SCC’s
for all SCC’s C in reverse order:

if literals of C are not assigned yet:
set all of them to 1
set their negations to 0

return the satisfying assignment

Running time: O(|F |)

Lemma
The algorithm 2SAT is correct.

Proof
When a literal is set to 1, all the literals
that are reachable from it have already
been set to 1 (since we process SCC’s in
reverse topological order).

When a literal is set to 0, all the literals
it is reachable from have already been
set to 0 (by skew-symmetry).

Lemma
The algorithm 2SAT is correct.

Proof
When a literal is set to 1, all the literals
that are reachable from it have already
been set to 1 (since we process SCC’s in
reverse topological order).
When a literal is set to 0, all the literals
it is reachable from have already been
set to 0 (by skew-symmetry).

Outline

1 2-Satisfiability

2 Independent Sets in Trees

Planning a company party

You are organizing a company party. You
would like to invite as many people as
possible with a single constraint: no person
should attend a party with his or her direct
boss.

Maximum independent set in a tree

Input: A tree.
Output: An independent set (i.e., a subset

of vertices no two of which are
adjacent) of maximum size.

Example

Example

Example

Example

Safe move
For any leaf, there exists an optimal solution
including this leaf.

It is safe to take all the leaves.

Safe move
For any leaf, there exists an optimal solution
including this leaf.

It is safe to take all the leaves.

PartyGreedy(T)

while T is not empty:
take all the leaves to the solution
remove them and their parents from T

return the constructed solution

Running time: O(|T |) (for each vertex, maintain
the number of its children).

PartyGreedy(T)

while T is not empty:
take all the leaves to the solution
remove them and their parents from T

return the constructed solution

Running time: O(|T |) (for each vertex, maintain
the number of its children).

Planning a company party

You are organizing a company party again.
However this time, instead of maximizing the
number of attendees, you would like to
maximize the total fun factor.

Maximum weighted independent set
in trees

Input: A tree T with weights on vertices.
Output: An independent set (i.e., a subset

of vertices no two of which are
adjacent) of maximum total weight.

Example

3

5 1 6

2 3 7 2

1 2 1

3

5 1 6

2 3 7 2

1 2 1
total weight: 17

3

5 1 6

2 3 7 2

1 2 1
total weight: 18

Example

3

5 1 6

2 3 7 2

1 2 1

3

5 1 6

2 3 7 2

1 2 1
total weight: 17

3

5 1 6

2 3 7 2

1 2 1
total weight: 18

Example

3

5 1 6

2 3 7 2

1 2 1

3

5 1 6

2 3 7 2

1 2 1
total weight: 17

3

5 1 6

2 3 7 2

1 2 1
total weight: 18

Subproblems

D(v) is the maximum weight of an
independent set in a subtree rooted at v

Recurrence relation: D(v) is

max

⎧⎪⎪⎨⎪⎪⎩w(v) +
∑︁

grandchildren
w of v

D(w),
∑︁

children
w of v

D(w)

⎫⎪⎪⎬⎪⎪⎭ .

Subproblems

D(v) is the maximum weight of an
independent set in a subtree rooted at v
Recurrence relation: D(v) is

max

⎧⎪⎪⎨⎪⎪⎩w(v) +
∑︁

grandchildren
w of v

D(w),
∑︁

children
w of v

D(w)

⎫⎪⎪⎬⎪⎪⎭ .

Function FunParty(v)
if D(v) =∞:

if v has no children:
D(v)← w(v)

else:
m1 ← w(v)
for all children u of v:

for all children w of u:
m1 ← m1 + FunParty(w)

m0 ← 0
for all children u of v:

m0 ← m0 + FunParty(u)
D(v)← max(m1,m0)

return D(v)

Function FunParty(v)
if D(v) =∞:

if v has no children:
D(v)← w(v)

else:
m1 ← w(v)
for all children u of v:

for all children w of u:
m1 ← m1 + FunParty(w)

m0 ← 0
for all children u of v:

m0 ← m0 + FunParty(u)
D(v)← max(m1,m0)

return D(v)

Function FunParty(v)
if D(v) =∞:

if v has no children:
D(v)← w(v)

else:
m1 ← w(v)
for all children u of v:

for all children w of u:
m1 ← m1 + FunParty(w)

m0 ← 0
for all children u of v:

m0 ← m0 + FunParty(u)

D(v)← max(m1,m0)
return D(v)

Function FunParty(v)
if D(v) =∞:

if v has no children:
D(v)← w(v)

else:
m1 ← w(v)
for all children u of v:

for all children w of u:
m1 ← m1 + FunParty(w)

m0 ← 0
for all children u of v:

m0 ← m0 + FunParty(u)
D(v)← max(m1,m0)

return D(v)

Example

318

55 13 610

22 33 77 22

11 22 11

	2-Satisfiability
	Independent Sets in Trees

